\qquad
Math 10550, Final Exam:
Instructor: \qquad
December 15, 2007

- Be sure that you have all 20 pages of the test.
- No calculators are to be used.
- The exam lasts for two hours.
- When told to begin, remove this answer sheet and keep it under the rest of your test. When told to stop, hand in just this one page.
- The Honor Code is in effect for this examination, including keeping your answer sheet under cover.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)	(b)	(c)	(d)	(e)	15. (a)	(b)	(c)	(d)	(e)
2. (a)	(b)	(c)	(d)	(e)	16. (a)	(b)	(c)	(d)	(e)
3. (a)	(b)	(c)	(d)	(e)	17. (a)	(b)	(c)	(d)	(e)
4. (a)	(b)	(c)	(d)	(e)	18. (a)	(b)	(c)	(d)	(e)
5. (a)	(b)	(c)	(d)	(e)	19. (a)	(b)	(c)	(d)	(e)
6. (a)	(b)	(c)	(d)	(e)	20. (a)	(b)	(c)	(d)	(e)
7. (a)	(b)	(c)	(d)	(e)	21. (a)	(b)	(c)	(d)	(e)
8. (a)	(b)	(c)	(d)	(e)	22. (a)	(b)	(c)	(d)	(e)
9. (a)	(b)	(c)	(d)	(e)	23. (a)	(b)	(c)	(d)	(e)
10. (a)	(b)	(c)	(d)	(e)	24. (a)	(b)	(c)	(d)	(e)
11. (a)	(b)	(c)	(d)	(e)	25. (a)	(b)	(c)	(d)	(e)
12. (a)	(b)	(c)	(d)	(e)					
13. (a)	(b)	(c)	(d)	(e)					
14. (a)	(b)	(c)	(d)	(e)					

Name: \qquad
Instructor: \qquad
Multiple Choice
1.(6 pts.) Find the limit

$$
\lim _{x \rightarrow 0} \frac{1-\sqrt{x+1}}{x}
$$

(a) -1
(b) 0
(c) The limit does not exist.
(d) $\frac{1}{3}$
(e) $-\frac{1}{2}$

Solution:

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-\sqrt{x+1}}{x} & =\lim _{x \rightarrow 0} \frac{(1-\sqrt{x+1})}{x} \cdot \frac{(1+\sqrt{x+1})}{(1+\sqrt{x+1})} \\
& =\lim _{x \rightarrow 0} \frac{1-(x+1)}{x(1+\sqrt{x+1})} \\
& =\lim _{x \rightarrow 0} \frac{-\not x}{x(1+\sqrt{x+1})} \\
& =\lim _{x \rightarrow 0} \frac{-1}{1+\sqrt{x+1}} \\
& =\frac{-1}{1+1} \\
& =-\frac{1}{2}
\end{aligned}
$$

2.(6 pts.) The function

$$
f(x)=\frac{x^{2}+x-6}{x^{2}-4}
$$

has a removable discontinuity at $x=2$. We can remove this discontinuity by defining $f(2)$ to be
(a) $\frac{1}{3}$
(b) 1
(c) 0
(d) $\frac{3}{2}$
(e) $\frac{5}{4}$

Name:
Instructor:
Solution: Since

$$
\begin{aligned}
\lim _{x \rightarrow 2} \frac{x^{2}+x-6}{x^{2}-4} & =\lim _{x \rightarrow 2} \frac{(x+3)(x-2)}{(x+2)(x-2)} \\
& =\frac{5}{4}
\end{aligned}
$$

Thus defining $f(2)=\frac{5}{4}$ yields

$$
\lim _{x \rightarrow 2} f(x)=f(2)
$$

so $f(x)$ is continuous at 2 .

Name: \qquad
Instructor: \qquad
3. (6 pts .) If

$$
r=\frac{\sin \theta}{1+\cos \theta}
$$

then $\frac{d r}{d \theta}=$
(a) $\frac{\cos \theta+\cos ^{2} \theta-\sin ^{2} \theta}{(1+\cos \theta)^{2}}$
(b) $\frac{1}{1+\cos \theta}$
(c) $-\frac{1}{1+\cos \theta}$
(d) $\frac{\cos \theta}{(1+\cos \theta)^{2}}$
(e) $-\frac{\cos \theta+\cos ^{2} \theta-\sin ^{2} \theta}{(1+\cos \theta)^{2}}$

Solution:

$$
\begin{aligned}
\frac{d r}{d \theta} & =\frac{(1+\cos \theta) \cos \theta-\sin \theta(-\sin \theta)}{(1+\cos \theta)^{2}} \\
& =\frac{\cos \theta+\cos ^{2} \theta+\sin ^{2} \theta}{(1+\cos \theta)^{2}} \\
& =\frac{1+\cos \theta}{(1+\cos \theta)^{2}} \\
& =\frac{1}{1+\cos \theta}
\end{aligned}
$$

4. (6 pts .) If

$$
f(x)=\sqrt{1+\sqrt{1+x}}
$$

then $f^{\prime}(8)=$
(a) $\frac{1}{24}$
(b) $\frac{1}{12}$
(c) $\frac{1}{8}$
(d) $\frac{1}{9}$
(e) $\frac{1}{2}$

Solution: Since

$$
f^{\prime}(x)=\frac{1}{2}(1+\sqrt{1+x})^{-\frac{1}{2}} \cdot \frac{1}{2}(1+x)^{-\frac{1}{2}}
$$

Name:
Instructor:
plugging in $x=8$ gives

$$
\begin{aligned}
f^{\prime}(8) & =\frac{1}{2}(1+\sqrt{1+8})^{-\frac{1}{2}} \cdot \frac{1}{2}(1+8)^{-\frac{1}{2}} \\
& =\frac{1}{2}(1+\sqrt{9})^{-\frac{1}{2}} \cdot \frac{1}{2}(9)^{-\frac{1}{2}} \\
& =\frac{1}{2} \cdot \frac{1}{\sqrt{4}} \cdot \frac{1}{2} \cdot \frac{1}{3} \\
& =\frac{1}{24} .
\end{aligned}
$$

Name: \qquad
Instructor: \qquad
5. (6 pts.) The second derivative of

$$
y=(x+1)(x-1)\left(x^{2}+1\right)
$$

is
(a) $24 x$
(b) $x^{2}+2 x-1$
(c) $12 x^{2}$
(d) $4 x^{3}$
(e) $4 x^{2}-2 x+1$

Solution: Since

$$
y=(x+1)(x-1)\left(x^{2}+1\right)=\left(x^{2}-1\right)\left(x^{2}+1\right)=x^{4}-1
$$

differentiating yields

$$
y^{\prime}=4 x^{3}
$$

and so

$$
y^{\prime \prime}=12 x^{2}
$$

6. (6 pts.) A body travels along a straight line according to the law

$$
s=-t^{4}-4 t^{3}+20 t^{2}, \quad t \geq 0
$$

At what position, after the motion gets started, does the body first come to rest?
(a) $s=32$
(b) $s=36$
(c) $s=2$
(d) $s=12$
(e) $s=24$

Solution: We first seek $t>0$ such that $v(t)=0$, where

$$
v(t)=s^{\prime}(t)=-4 t^{3}-12 t^{2}+40 t
$$

Since factoring gives

$$
v(t)=-4 t\left(t^{2}+3 t-10\right)=-4 t(t-2)(t+5)
$$

we see that $t=2$ is the first time when the body is at rest. The position at $t=2$ is

$$
s(2)=-2^{4}-4 \cdot 2^{3}+20 \cdot 2^{2}=32
$$

Name: \qquad
Instructor: \qquad
7. (6 pts .) The equation of the tangent line to the curve

$$
y=x^{3}+6 x^{2}+10 x+6
$$

at $x=-2$ is
(a) $y=\frac{x}{2}$
(b) $y=-2 x-2$
(c) $y=-\frac{1}{2} x+1$
(d) $y=-x+2$
(e) $y=-2 x$

Solution: Since

$$
y^{\prime}=3 x^{2}+12 x+10
$$

plugging in $x=-2$ gives

$$
y^{\prime}(2)=3 \cdot(-2)^{2}+12 \cdot(-2)+10=-2
$$

When $x=-2$, the y-coordinate on the given curve is

$$
y=(-2)^{3}+6 \cdot(-2)^{2}+10 \cdot(-2)+6=2 .
$$

Therefore the equation of the tangent is

$$
\begin{aligned}
& y-2=-2(x+2) \\
\Longrightarrow \quad & y=-2 x-2 .
\end{aligned}
$$

8. (6 pts.$)$ Use the implicit differentiation to find the equation of the tangent line to the curve

$$
\sqrt{5 x+9 y}=2+x y^{2}+y
$$

at the point $(0,1)$.
(a) $\quad y=\frac{4}{3} x+1$
(b) $y=-\frac{5}{6} x$
(c) $y=\frac{1}{3} x+1$
(d) $y=-\frac{5}{6} x+1$
(e) $y=\frac{1}{3} x$

Solution: Implicitly differentiating both sides of the given equation yields

$$
\frac{1}{2}(5 x+9 y)^{-1 / 2} \cdot\left(5+9 y^{\prime}\right)=y^{2}+2 x y y^{\prime}+y^{\prime}
$$

Name:
Instructor:
which after plugging in $x=0$ and $y=1$ simplifies to

$$
\frac{1}{6}\left(5+9 y^{\prime}\right)=1+y^{\prime}
$$

Solving for y^{\prime} gives $y^{\prime}=\frac{1}{3}$. Therefore the equation of the tangent line is

$$
y=\frac{1}{3} x+1 .
$$

Name: \qquad
Instructor: \qquad
9. (6 pts.$)$ A cylinder is carved out of ice and then left in the sun to melt. If the radius decreases at a rate of 3 inches per hour and the height decreases at a rate of 6 inches per hour, how fast is the surface area of the cylinder decreasing when the cylinder is at height 5 feet and radius one foot? (Hint: 12 inches in a foot.)

Answer: The total surface area decreases at a rate of
(a) $\frac{3 \pi}{4} \mathrm{ft}^{2} / \mathrm{hr}$
(b) $\frac{5 \pi}{4} \mathrm{ft}^{2} / \mathrm{hr}$
(c) $\frac{5 \pi}{2} \mathrm{ft}^{2} / \mathrm{hr}$
(d) $\frac{9 \pi}{2} \mathrm{ft}^{2} / \mathrm{hr}$
(e) $2 \pi \mathrm{ft}^{2} / \mathrm{hr}$

Solution: The surface are is given by

$$
A=2 \pi r^{2}+2 \pi r h
$$

Differentiating with respect to t then gives

$$
\frac{d A}{d t}=4 \pi r \frac{d r}{d t}+2 \pi\left(h \frac{d r}{d t}+r \frac{d h}{d t}\right) .
$$

Plugging in the given values $h=5, r=1, \frac{d r}{d t}=\frac{1}{4}$, and $\frac{d h}{d t}=\frac{1}{2}$ yields

$$
\frac{d A}{d t}=4 \pi \cdot \frac{1}{4}+2 \pi\left(5 \cdot \frac{1}{4}+\frac{1}{2}\right)=\frac{9 \pi}{2} .
$$

10. (6 pts.) Use linear approximation to estimate

$$
\frac{1}{\sqrt{4.1}}
$$

(a) $\frac{1}{\sqrt{4.1}} \approx \frac{81}{160}$
(b) $\frac{1}{\sqrt{4.1}} \approx \frac{39}{80}$
(c) $\frac{1}{\sqrt{4.1}} \approx \frac{9}{20}$
(d) $\frac{1}{\sqrt{4.1}} \approx \frac{79}{160}$
(e) $\frac{1}{\sqrt{4.1}} \approx \frac{41}{80}$

Solution: With $f(x)=x^{-\frac{1}{2}}$, and hence $f^{\prime}(x)=-\frac{1}{2} x^{-\frac{3}{2}}$, the linear approximation of f at $x=4.1$ is

$$
f(4.1)=f(4)+f^{\prime}(4)(4.1-4)=\frac{1}{2}-\frac{1}{2} \cdot \frac{1}{8} \cdot .1=\frac{79}{160} .
$$

Name: \qquad
Instructor: \qquad
11. (6 pts .) The maximum and minimum values of

$$
f(x)=\frac{x}{x^{2}+1},
$$

on the interval $[0,2]$ are
(a) $\quad M=\frac{1}{2}, m=0$
(b) $\quad M=\frac{1}{2}, m=-\frac{1}{2}$
(c) $\quad M=1, m=-\frac{3}{25}$
(d) $\quad M=\frac{2}{5}, m=0$
(e) $\quad m=0$ is a minimum; there is no maximum.

Solution: The critical points are where

$$
f^{\prime}(x)=\frac{x^{2}+1-x(2 x)}{\left(x^{2}+1\right)^{2}}=\frac{1-x^{2}}{\left(1+x^{2}\right)^{2}}
$$

equals zero and the endpoints $x=0, x=2$. Since $f^{\prime}(x)=0$ if and only if $x= \pm 1$, we take $x=1$ as our third critical points. Since $f(0)=0, f(1)=\frac{1}{2}$, and $f(2)=\frac{2}{5}$, we see that $M=\frac{1}{2}$ and $m=0$.
12. (6 pts.) Determine the number of solutions of the equation

$$
x^{3}-15 x+1=0
$$

in the interval $[-2,2]$. The number of solutions is
(a) 2
(b) 0
(c) 1
(d) 3
(e) 4

Solution: Set $f(x)=x^{3}-15 x+1$, so that $f^{\prime}(x)=3 x^{2}-15$. Since $f(-2)=23$ and $f(2)=-21$, the intermediate value theorem guarantees that f has at least one root in $[-2,2]$. Because $x^{2}<5$ for $x \in[-2,2]$, it follows that $3 x^{2}<15$ and hence $f^{\prime}(x)=3 x^{2}-15<0$ for $x \in[-2,2]$. Thus f is strictly decreasing on $[-2,2]$ and hence cannot have more than one zero on $[-2,2]$. Therefore f has exactly one root on $[-2,2]$.

Name: \qquad
Instructor: \qquad
13. (6 pts.) Consider the function

$$
f(x)=\frac{x^{2}+3}{x-1}
$$

One of the following statements is true. Which one?
(a) The line $y=x+1$ is a slant asymptote of f, and the line $x=1$ is a vertical asymptote of f.
(b) $\quad f$ has no horizontal or slant asymptotes, and the line $x=-1$ is a vertical asymptote.
(c) The line $y=0$ is a horizontal asymptote of f, and the line $x=-1$ is a vertical asymptote of f.
(d) The line $y=x+2$ is a slant asymptote of f, and the line f has no vertical asymptotes.
(e) The line $y=x-1$ is a slant asymptote of f and the line $x=1$ is a vertical asymptote of f.

Solution: Since (as long division easily verifies)

$$
\frac{x^{2}+3}{x-1}=x+1+\frac{4}{x-1}
$$

the slant asymptote is $y=x+1$. Thus there is no horizontal asymptote. Because the denominator is undefined at $x=1$ and $x-1$ is not a factor of the numerator, $x=1$ is a vertical asymptote.
14. (6 pts.) Consider the function

$$
f(x)=\frac{x^{2}+3}{x-1}
$$

One of the following statements is true. Which one?
(a) f is increasing on the interval $(-1,3)$.
(b) $\quad f$ has a local minimum at $x=-1$.
(c) $\quad f$ is decreasing on the intervals $(-1,1)$ and $(1,3)$.
(d) $\quad f$ is increasing on the intervals $(-\infty,-1)$ and $(1,3)$.
(e) $\quad f$ has a local minimum at $x=1$.

Solution: From the previous problem, we know

$$
f(x)=x+1+\frac{4}{x-1},
$$

Name:
Instructor: \qquad
so that

$$
f^{\prime}(x)=1-\frac{4}{(x-1)^{2}}
$$

Then for $x \neq 1$

$$
\begin{aligned}
f^{\prime}(x)>0 & \Leftrightarrow 1>\frac{4}{(x-1)^{2}} \\
& \Leftrightarrow(x-1)^{2}>4 \\
& \Leftrightarrow(x-3)(x+1)>0 \\
& \Leftrightarrow x<-1 \text { or } x>3 .
\end{aligned}
$$

Thus f is increasing on $(-\infty,-1)$ and $(3, \infty)$ and decreasing everywhere else (i.e. on $(-1,1)$ and $(1,3))$.

Clearly $x=1$ is not a local minimum since f has a vertical asymptote there.
Although $f^{\prime}(-1)=0$, this is actually because of a local maximum. Indeed

$$
f^{\prime \prime}(x)=\frac{8}{(x-1)^{3}},
$$

so $f^{\prime \prime}(-1)<0$.

Name: \qquad
Instructor: \qquad
15. (6 pts.) Consider the function

$$
f(x)=\frac{\sqrt{9 x^{6}-x}}{x^{3}+1}
$$

One of the following statements is true. Which one?
(a) $y=3$ is a horizontal asymptote of f, and $y=-3$ is not a horizontal asymptote.
(b) f has no horizontal asymptotes.
(c) $y=0$ and $y=-3$ are both horizontal asymptotes of f.
(d) $y= \pm 3$ are both horizontal asymptotes of f.
(e) $y=0$ is a horizontal asymptote of f.

Solution: Since the problem only asks about horizontal asymptotes, we compute limits as $x \rightarrow \pm \infty$:

$$
\begin{aligned}
\lim _{x \rightarrow \infty} f(x) & =\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{6}-x}}{x^{3}+1} \frac{\frac{1}{\sqrt{x^{6}}}}{\frac{1}{x^{3}}} \\
& =\lim _{x \rightarrow \infty} \frac{\sqrt{9-\frac{1}{x^{5}}}}{1+\frac{1}{x^{3}}} \\
& =\frac{\sqrt{9-0}}{1+0} \\
& =3
\end{aligned}
$$

and similarly (since $x^{3}=-\sqrt{x^{6}}$ when $x<0$)

$$
\begin{aligned}
\lim _{x \rightarrow-\infty} f(x) & =\lim _{x \rightarrow-\infty} \frac{\sqrt{9 x^{6}-x}-\frac{1}{\sqrt{x^{6}}}}{x^{3}+1} \frac{\frac{1}{x^{3}}}{} \\
& =-\lim _{x \rightarrow-\infty} \frac{\sqrt{9-\frac{1}{x^{5}}}}{1+\frac{1}{x^{3}}} \\
& =-\frac{\sqrt{9-0}}{1+0} \\
& =-3
\end{aligned}
$$

so $y= \pm 3$ are both horizontal asymptotes of f.

Name: \qquad
Instructor: \qquad
16. (6 pts.) The function $f(x)=(2 x+1)^{4}-24 x^{2}+5 x$ is concave down on which of the following intervals?
(a) $(0,1)$
(b) $(-1, \infty)$
(c) $(-\infty,-1)$
(d) $(-1,0)$
(e) $(-\infty, 1)$

Solution: Since

$$
f^{\prime}(x)=4(2 x+1)^{3} \cdot 2-48 x+5=8(2 x+1)^{3}-48 x+5
$$

and

$$
f^{\prime \prime}(x)=24(2 x+1)^{2} \cdot 2-48=48(\underbrace{(2 x+1)^{2}-1}_{a^{2}-b^{2}})=48(2 x)(2 x+2)=192 x(x+1),
$$

finding where $f^{\prime \prime}(x)<0$ amounts to solving $x(x+1)<0$. The curve $x(x+1)$ is an upward-opening parabola with roots at $x=0$ and $x=-1$, and whence is negative when $-1<x<0$. Therefore f is concave down on $(-1,0)$.

Name: \qquad
Instructor: \qquad
17.(6 pts .) An open box is to be made from a square of side one by cutting four identical squares near the vertices. The box with the largest volume has a height of
(a) $\frac{1}{6}$
(b) $\frac{3}{4}$
(c) $\frac{2}{17}$
(d) $\frac{1}{2}$
(e) $\frac{1}{4}$

Solution: If the height of the box is h (which is also the side length of the cutout square), then the volume is given by

$$
V=h(1-2 h)^{2}=h-4 h^{2}+4 h^{3} .
$$

Thus

$$
V^{\prime}=1-8 h+12 h^{2}=(4 h-2)\left(3 h-\frac{1}{2}\right),
$$

so that $V^{\prime}=0$ when $h=\frac{1}{2}$ or $h=\frac{1}{6}$.
In order to make a box, h must be in the interval $(0,1 / 2)$. Because V^{\prime} is an upwardopening parabola, it must switch from positive to negative at $h=\frac{1}{6}$ and be negative until $h=\frac{1}{2}$, so $h=\frac{1}{6}$ is gives a maximum on $(0,1 / 2)$.
18. (6 pts.) When applying Newton's method to approximate a root of the equation $x^{3}-x+2=0$, with initial guess $x_{1}=1$, the value of x_{2} is:
(a) 1.5
(b) 0.5
(c) 0
(d) 2
(e) 3

Solution: With $f(x)=x^{3}-x+2$, we have

$$
f^{\prime}(x)=3 x^{2}-1
$$

Thus

$$
\begin{aligned}
x_{2} & =x_{1}-\frac{f\left(x_{1}\right)}{f^{\prime}\left(x_{1}\right)} \\
& =1-\frac{f(1)}{f^{\prime}(1)} \\
& =1-\frac{2}{2} \\
& =0 .
\end{aligned}
$$

Name: \qquad
Instructor: \qquad
19. (6 pts.) Which of the following is a Riemann sum corresponding to the integral

$$
\int_{2}^{3} x^{4} d x ?
$$

(a) $\frac{2}{n} \sum_{i=1}^{n}\left(2+\frac{i}{n}\right)^{4}$
(b) $\frac{1}{n} \sum_{i=1}^{n}\left(2+\frac{i}{n}\right)^{4}$
(c) $\frac{1}{2 n} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{4}$
(d) $\frac{2}{n} \sum_{i=1}^{n}\left(\frac{2+i}{n}\right)^{4}$
(e) $\frac{1}{n} \sum_{i=1}^{n}\left(\frac{i}{n}\right)^{4}$

Solution: With $f(x)=x^{4}$ and $\Delta x=\frac{3-2}{n}=\frac{1}{n}$, the Riemann sum in this case is

$$
\sum_{i=1}^{n} f(2+i \Delta x) \Delta x=\sum_{i=1}^{n}\left(2+\frac{i}{n}\right)^{4} \frac{1}{n}=\frac{1}{n} \sum_{i=1}^{n}\left(2+\frac{i}{n}\right)^{4}
$$

20. (6 pts.) A function $f(x)$ defined on the interval $[-1,1]$ has an antiderivative $F(x)$. Assume that $F(-1)=8$ and $F(1)=7$. Which one of the statements below is true?
(a) $\int_{-1}^{1} f(x) d x=1$.
(b) $\quad F(x)$ is an increasing function.
(c) $\quad f(x)$ can be an odd function.
(d) $\int_{-1}^{1} f(x) d x=0$.
(e) $\quad \int_{-1}^{1} f(x) d x=-1$.

Solution: If f is not assumed continuous, then f might not be integrable, so that none of the choices are correct. Thus we add the hypothesis that f is continuous.

By the fundamental theorem of calculus,

$$
\int_{-1}^{1} f(x) d x=F(1)-F(-1)=7-8=-1 .
$$

Note that $f(x)$ cannot be an odd function since if it were, then

$$
\int_{-1}^{1} f(x) d x=0
$$

contrary to the calculation above.

Name: \qquad
Instructor: \qquad
21. (6 pts.) Calculate the integral

$$
\int_{\frac{\pi}{2}}^{\frac{3 \pi}{2}}|\sin x| d x .
$$

(a) π
(b) 1
(c) $\frac{\pi}{2}$
(d) 2π
(e) 2

Solution: Since $\sin x<0$ only on $(\pi, 3 \pi / 2)$,

$$
\begin{aligned}
\int_{\pi / 2}^{3 \pi / 2}|\sin x| d x & =\int_{\pi / 2}^{\pi} \sin x d x+\int_{\pi}^{3 \pi / 2}-\sin x d x \\
& =-\left.\cos x\right|_{\pi / 2} ^{\pi}+\left.\cos x\right|_{\pi} ^{3 \pi / 2} \\
& =2
\end{aligned}
$$

22. (6 pts.) The volume of the solid obtained by rotating the region given by $x^{2}+y^{2}=1$, $x \geq 0$ and $y \geq 0$, about the line $y=-1$ is
(a) $\pi \int_{0}^{1}\left(1-x^{2}\right) d x$
(b) $\pi \int_{0}^{1}\left[1-x^{2}+2 \sqrt{1-x^{2}}\right] d x$
(c) $2 \pi \int_{0}^{1} x\left[1-x^{2}+2 \sqrt{1-x^{2}}\right] d x$
(d) $2 \pi \int_{0}^{1} x \sqrt{1-x^{2}} d x$
(e) $\pi \int_{0}^{1}\left(1+\sqrt{1-x^{2}}\right)^{2} d x$

Name:
Instructor:
Solution: The outer radius is $\sqrt{1-x^{2}}+1$ and the inner is -1 , so

$$
\begin{aligned}
V & =\int_{0}^{1} \pi\left((\text { outer radius })^{2}-(\text { inner radius })^{2}\right) d x \\
& =\int_{0}^{1} \pi\left(\left(\sqrt{1-x^{2}}+1\right)^{2}-1^{2}\right) d x \\
& =\pi \int_{0}^{1}\left[1-x^{2}-2 \sqrt{1-x^{2}}\right] d x
\end{aligned}
$$

Name: \qquad
Instructor: \qquad
23. (6 pts .) Find the volume of the solid obtained by rotating about the y-axis the region between $y=x^{2}$ and $y=x^{4}$.
(a) $\frac{\pi}{6}$
(b) π
(c) $\frac{\pi}{10}$
(d) 2π
(e) $\frac{\pi}{5}$

Solution: The curves intersect when $x=0$ and $x=1$ (and $x=-1$, but since the solid is obtained by rotating around the y-axis, this intersection point is irrelevant). Thus

$$
\begin{aligned}
V & =\int_{0}^{1} 2 \pi x\left[x^{2}-x^{4}\right] d x \\
& =2 \pi\left[\frac{x^{4}}{4}-\frac{x^{6}}{6}\right]_{0}^{1} \\
& =2 \pi\left[\frac{1}{4}-\frac{1}{6}\right] \\
& =\frac{\pi}{6} .
\end{aligned}
$$

24. (6 pts .) Find the average of $f(x)=\sin ^{2}(x) \cdot \cos (x)$ over $\left[0, \frac{\pi}{2}\right]$.
(a) $\frac{2}{\pi}$
(b) $\frac{1}{3 \pi}$
(c) $\frac{2}{3 \pi}$
(d) $\frac{1}{3}$
(e) $\frac{1}{\pi}$

Solution: The average is given by

$$
\begin{aligned}
\frac{1}{\pi / 2} \int_{0}^{\pi / 2} \underbrace{\sin ^{2}(x)}_{u^{2}} \underbrace{\cos (x) d x}_{d u} & =\frac{2}{\pi} \int_{0}^{1} u^{2} d u \\
& =\frac{2}{3 \pi}
\end{aligned}
$$

Name: \qquad
Instructor: \qquad
25. (6 pts .) A (vertical) cylindrical tank has a height 1 meter and base radius 1 meter. It is filled full with a liquid with a density $100 \mathrm{~kg} / \mathrm{m}^{3}$. Find the work required to empty the tank by pumping all of the liquid to the top of the tank.
(a) $500 \pi \mathrm{~kg}-\mathrm{m}$
(b) $100 \pi \mathrm{~kg}-\mathrm{m}$
(c) $200 \pi \mathrm{~kg}-\mathrm{m}$
(d) $0 \mathrm{~kg}-\mathrm{m}$
(e) $50 \pi \mathrm{~kg}-\mathrm{m}$

Solution: None of the given solutions are correct.
We consider the cylinder sliced into n slabs of equal height Δx so that the work done on the $i^{\text {th }}$ slice is

$$
\begin{aligned}
W_{i} & =F_{i} x_{i} \\
& =\left(100 \times V_{i} \times 9.8\right) x_{i} \\
& =\left(100 \times \pi(1)^{2} \Delta x \times o .8\right) x_{i} \\
& =(980 \pi \Delta x) x_{i},
\end{aligned}
$$

where x_{i} is a point in the $i^{\text {th }}$ slab. Then the total work is

$$
\begin{aligned}
W & =\lim _{n \rightarrow \infty} \sum_{i=1}^{n} W_{i} \\
& =980 \pi \lim _{n \rightarrow \infty} \sum_{i=1}^{n} x_{i} \Delta x \\
& =980 \pi \int_{0}^{1} x d x \\
& =980 \pi / 2 \\
& =490 \pi
\end{aligned}
$$

Math 10550, Final Exam:
December 15, 2007

Name: \qquad
Instructor: ANSWERS

- Be sure that you have all 20 pages of the test.
- No calculators are to be used.
- The exam lasts for two hours.
- When told to begin, remove this answer sheet and keep it under the rest of your test. When told to stop, hand in just this one page.
- The Honor Code is in effect for this examination, including keeping your answer sheet under cover.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!

1. (a)	(b)	(c)	(d)	()	15. (a)	(b)	(c)	()	(e)
2. (a)	(b)	(c)	(d)	(-)	16. (a)	(b)	(c)	()	(e)
3. (a)	(-)	(c)	(d)	(e)	17. (${ }^{\text {(}}$	(b)	(c)	(d)	(e)
4. ()	(b)	(c)	(d)	(e)	18. (a)	(b)	(${ }^{\text {) }}$	(d)	(e)
5. (a)	(b)	(${ }^{\text {) }}$	(d)	(e)	19. (a)	($)^{\text {(}}$	(c)	(d)	(e)
6. ()	(b)	(c)	(d)	(e)	20. (a)	(b)	(c)	(d)	($)$
7. (a)	(${ }^{\text {) }}$	(c)	(d)	(e)	21. (a)	(b)	(c)	(d)	($)^{\text {(}}$
8. (a)	(b)	($)$	(d)	(e)	22. (a)	(${ }^{\text {(}}$	(c)	(d)	(e)
9. (a)	(b)	(c)	(${ }^{\text {) }}$	(e)	23. ($)^{\text {(}}$	(b)	(c)	(d)	(e)
10. (a)	(b)	(c)	(${ }^{\text {) }}$	(e)	24. (a)	(b)	($)$	(d)	(e)
11. (${ }^{\text {(}}$	(b)	(c)	(d)	(e)	25. (a)	(b)	(c)	(d)	(${ }^{\text {) }}$
12. (a)	(b)	($)$	(d)	(e)					
13. ()	(b)	(c)	(d)	(e)					
14. (a)	(b)	($)$	(d)	(e)					

