Name: _____

Math 10550, Final Exam: December 15, 2007

Instructor: _____

- Be sure that you have all 20 pages of the test.
- No calculators are to be used.
- The exam lasts for two hours.
- When told to begin, remove this answer sheet and keep it under the rest of your test. When told to stop, hand in just this one page.
- The Honor Code is in effect for this examination, including keeping your answer sheet under cover.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!											
1.	(a)	(b)	(c)	(d)	(e)	15.	(a)	(b)	(c)	(d)	(e)
2.	(a)	(b)	(c)	(d)	(e)	16.	(a)	(b)	(c)	(d)	(e)
3.	(a)	(b)	(c)	(d)	(e)	17.	(a)	(b)	(c)	(d)	(e)
4.	(a)	(b)	(c)	(d)	(e)	18.	(a)	(b)	(c)	(d)	(e)
5.	(a)	(b)	(c)	(d)	(e)	19.	(a)	(b)	(c)	(d)	(e)
6.	(a)	(b)	(c)	(d)	(e)	20.	(a)	(b)	(c)	(d)	(e)
7.	(a)	(b)	(c)	(d)	(e)	21.	(a)	(b)	(c)	(d)	(e)
8.	(a)	(b)	(c)	(d)	(e)	22.	(a)	(b)	(c)	(d)	(e)
9.	(a)	(b)	(c)	(d)	(e)	23.	(a)	(b)	(c)	(d)	(e)
10.	(a)	(b)	(c)	(d)	(e)	24.	(a)	(b)	(c)	(d)	(e)
11. 12.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)	25.	(a)	(b)	(c)	(d)	(e)
13. 14.	(a) (a)	(b) (b)	(c) (c)	(d) (d)	(e) (e)						

Name: _____ Instructor:

Multiple Choice

 $\overline{3}$

1.(6 pts.) Find the limit

(a)
$$-1$$
 (b) 0
(c) The limit does not exist. (d) $\frac{1}{2}$

(c)The limit does not exist.

(e)
$$-\frac{1}{2}$$

Solution:

$$\lim_{x \to 0} \frac{1 - \sqrt{x+1}}{x} = \lim_{x \to 0} \frac{(1 - \sqrt{x+1})}{x} \cdot \frac{(1 + \sqrt{x+1})}{(1 + \sqrt{x+1})}$$
$$= \lim_{x \to 0} \frac{1 - (x+1)}{x(1 + \sqrt{x+1})}$$
$$= \lim_{x \to 0} \frac{-x}{x(1 + \sqrt{x+1})}$$
$$= \lim_{x \to 0} \frac{-1}{1 + \sqrt{x+1}}$$
$$= \frac{-1}{1 + 1}$$
$$= -\frac{1}{2}$$

 $\mathbf{2.}(6 \text{ pts.})$ The function

$$f(x) = \frac{x^2 + x - 6}{x^2 - 4}$$

has a removable discontinuity at x = 2. We can remove this discontinuity by defining f(2) to be

(b) 1 (c) 0 (d) $\frac{3}{2}$ (e) $\frac{5}{4}$ $\frac{1}{3}$ (a)

Solution: Since

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 4} = \lim_{x \to 2} \frac{(x+3)(x-2)}{(x+2)(x-2)}$$
$$= \frac{5}{4},$$

Thus defining $f(2) = \frac{5}{4}$ yields

$$\lim_{x \to 2} f(x) = f(2),$$

so f(x) is continuous at 2.

3.(6 pts.) If

$$r = \frac{\sin \theta}{1 + \cos \theta},$$
then $\frac{dr}{d\theta} =$
(a) $\frac{\cos \theta + \cos^2 \theta - \sin^2 \theta}{(1 + \cos \theta)^2}$
(b) $\frac{1}{1 + \cos \theta}$
(c) $-\frac{1}{1 + \cos \theta}$
(d) $\frac{\cos \theta}{(1 + \cos \theta)^2}$

(e)
$$-\frac{\cos\theta + \cos^2\theta - \sin^2\theta}{(1 + \cos\theta)^2}$$

Solution:

$$\frac{dr}{d\theta} = \frac{(1+\cos\theta)\cos\theta - \sin\theta(-\sin\theta)}{(1+\cos\theta)^2}$$
$$= \frac{\cos\theta + \cos^2\theta + \sin^2\theta}{(1+\cos\theta)^2}$$
$$= \frac{1+\cos\theta}{(1+\cos\theta)^2}$$
$$= \frac{1}{1+\cos\theta}$$

4.(6 pts.) If

$$f(x) = \sqrt{1 + \sqrt{1 + x}},$$

then $f'(8) =$

(a)
$$\frac{1}{24}$$
 (b) $\frac{1}{12}$ (c) $\frac{1}{8}$ (d) $\frac{1}{9}$ (e) $\frac{1}{2}$

Solution: Since

$$f'(x) = \frac{1}{2}(1 + \sqrt{1+x})^{-\frac{1}{2}} \cdot \frac{1}{2}(1+x)^{-\frac{1}{2}}$$

Name: _____

Instructor:

plugging in x = 8 gives

$$f'(8) = \frac{1}{2}(1 + \sqrt{1+8})^{-\frac{1}{2}} \cdot \frac{1}{2}(1+8)^{-\frac{1}{2}}$$
$$= \frac{1}{2}(1 + \sqrt{9})^{-\frac{1}{2}} \cdot \frac{1}{2}(9)^{-\frac{1}{2}}$$
$$= \frac{1}{2} \cdot \frac{1}{\sqrt{4}} \cdot \frac{1}{2} \cdot \frac{1}{3}$$
$$= \frac{1}{24}.$$

5.(6 pts.) The second derivative of

$$y = (x+1)(x-1)(x^2+1)$$

is

- (a) 24x
- (b) $x^2 + 2x 1$
- (c) $12x^2$
- (d) $4x^3$
- (e) $4x^2 2x + 1$

Solution: Since

$$y = (x+1)(x-1)(x^2+1) = (x^2-1)(x^2+1) = x^4-1,$$

differentiating yields

$$y' = 4x^3$$

and so

$$y'' = 12x^2.$$

6.(6 pts.) A body travels along a straight line according to the law

$$s = -t^4 - 4t^3 + 20t^2, \quad t \ge 0.$$

At what position, after the motion gets started, does the body first come to rest?

- (a) s = 32 (b) s = 36 (c) s = 2
- (d) s = 12 (e) s = 24

Solution: We first seek t > 0 such that v(t) = 0, where

$$v(t) = s'(t) = -4t^3 - 12t^2 + 40t.$$

Since factoring gives

$$v(t) = -4t(t^{2} + 3t - 10) = -4t(t - 2)(t + 5),$$

we see that t = 2 is the first time when the body is at rest. The position at t = 2 is $s(2) = -2^4 - 4 \cdot 2^3 + 20 \cdot 2^2 = 32.$

7.(6 pts.) The equation of the tangent line to the curve

$$y = x^3 + 6x^2 + 10x + 6$$

at x = -2 is

- (a) $y = \frac{x}{2}$ (b) y = -2x 2
- (c) $y = -\frac{1}{2}x + 1$ (d) y = -x + 2
- (e) y = -2x

Solution: Since

$$y' = 3x^2 + 12x + 10,$$

plugging in x = -2 gives

$$y'(2) = 3 \cdot (-2)^2 + 12 \cdot (-2) + 10 = -2.$$

When x = -2, the *y*-coordinate on the given curve is

$$y = (-2)^3 + 6 \cdot (-2)^2 + 10 \cdot (-2) + 6 = 2.$$

Therefore the equation of the tangent is

$$y - 2 = -2(x + 2)$$
$$\implies y = -2x - 2.$$

8.(6 pts.) Use the implicit differentiation to find the equation of the tangent line to the curve

$$\sqrt{5x+9y} = 2 + xy^2 + y$$

at the point (0, 1).

(a) $y = \frac{4}{3}x + 1$ (b) $y = -\frac{5}{6}x$ (c) $y = \frac{1}{3}x + 1$ (d) $y = -\frac{5}{6}x + 1$ (e) $y = \frac{1}{3}x$

Solution: Implicitly differentiating both sides of the given equation yields

$$\frac{1}{2}(5x+9y)^{-1/2} \cdot (5+9y') = y^2 + 2xyy' + y',$$

Name: ______ Instructor: ______

which after plugging in x = 0 and y = 1 simplifies to

$$\frac{1}{6}(5+9y') = 1+y'.$$

Solving for y' gives $y' = \frac{1}{3}$. Therefore the equation of the tangent line is

$$y = \frac{1}{3}x + 1.$$

9.(6 pts.) A cylinder is carved out of ice and then left in the sun to melt. If the radius decreases at a rate of 3 inches per hour and the height decreases at a rate of 6 inches per hour, how fast is the surface area of the cylinder decreasing when the cylinder is at height 5 feet and radius one foot? (Hint: 12 inches in a foot.)

Answer: The total surface area decreases at a rate of

(a)
$$\frac{3\pi}{4}$$
 ft²/hr
(b) $\frac{5\pi}{4}$ ft²/hr
(c) $\frac{5\pi}{2}$ ft²/hr
(d) $\frac{9\pi}{2}$ ft²/hr
(e) 2π ft²/hr

Solution: The surface are is given by

$$A = 2\pi r^2 + 2\pi rh.$$

Differentiating with respect to t then gives

$$\frac{dA}{dt} = 4\pi r \frac{dr}{dt} + 2\pi \left(h\frac{dr}{dt} + r\frac{dh}{dt}\right).$$

Plugging in the given values h = 5, r = 1, $\frac{dr}{dt} = \frac{1}{4}$, and $\frac{dh}{dt} = \frac{1}{2}$ yields

$$\frac{dA}{dt} = 4\pi \cdot \frac{1}{4} + 2\pi (5 \cdot \frac{1}{4} + \frac{1}{2}) = \frac{9\pi}{2}.$$

10.(6 pts.) Use linear approximation to estimate

$$\frac{1}{\sqrt{4.1}}.$$
(a) $\frac{1}{\sqrt{4.1}} \approx \frac{81}{160}$
(b) $\frac{1}{\sqrt{4.1}} \approx \frac{39}{80}$
(c) $\frac{1}{\sqrt{4.1}} \approx \frac{9}{20}$
(d) $\frac{1}{\sqrt{4.1}} \approx \frac{79}{160}$
(e) $\frac{1}{\sqrt{4.1}} \approx \frac{41}{80}$

Solution: With $f(x) = x^{-\frac{1}{2}}$, and hence $f'(x) = -\frac{1}{2}x^{-\frac{3}{2}}$, the linear approximation of f at x = 4.1 is

$$f(4.1) = f(4) + f'(4)(4.1 - 4) = \frac{1}{2} - \frac{1}{2} \cdot \frac{1}{8} \cdot .1 = \frac{79}{160}.$$

Name: ______ Instructor: ______

11.(6 pts.) The maximum and minimum values of

$$f(x) = \frac{x}{x^2 + 1},$$

on the interval [0,2] are

- (a) $M = \frac{1}{2}, m = 0$
- (b) $M = \frac{1}{2}, \ m = -\frac{1}{2}$
- (c) $M = 1, m = -\frac{3}{25}$
- (d) $M = \frac{2}{5}, m = 0$
- (e) m = 0 is a minimum; there is no maximum.

Solution: The critical points are where

$$f'(x) = \frac{x^2 + 1 - x(2x)}{(x^2 + 1)^2} = \frac{1 - x^2}{(1 + x^2)^2}$$

equals zero and the endpoints x = 0, x = 2. Since f'(x) = 0 if and only if $x = \pm 1$, we take x = 1 as our third critical points. Since f(0) = 0, $f(1) = \frac{1}{2}$, and $f(2) = \frac{2}{5}$, we see that $M = \frac{1}{2}$ and m = 0.

12.(6 pts.) Determine the number of solutions of the equation

$$x^3 - 15x + 1 = 0$$

in the interval [-2, 2]. The number of solutions is

(a) 2 (b) 0 (c) 1 (d) 3 (e) 4

Solution: Set $f(x) = x^3 - 15x + 1$, so that $f'(x) = 3x^2 - 15$. Since f(-2) = 23 and f(2) = -21, the intermediate value theorem guarantees that f has at least one root in [-2, 2]. Because $x^2 < 5$ for $x \in [-2, 2]$, it follows that $3x^2 < 15$ and hence $f'(x) = 3x^2 - 15 < 0$ for $x \in [-2, 2]$. Thus f is strictly decreasing on [-2, 2] and hence cannot have more than one zero on [-2, 2]. Therefore f has exactly one root on [-2, 2].

Name:	
Instructor:	

13.(6 pts.) Consider the function

$$f(x) = \frac{x^2 + 3}{x - 1}.$$

One of the following statements is true. Which one?

- (a) The line y = x + 1 is a slant asymptote of f, and the line x = 1 is a vertical asymptote of f.
- (b) f has no horizontal or slant asymptotes, and the line x = -1 is a vertical asymptote.
- (c) The line y = 0 is a horizontal asymptote of f, and the line x = -1 is a vertical asymptote of f.
- (d) The line y = x + 2 is a slant asymptote of f, and the line f has no vertical asymptotes.
- (e) The line y = x 1 is a slant asymptote of f and the line x = 1 is a vertical asymptote of f.

Solution: Since (as long division easily verifies)

$$\frac{x^2+3}{x-1} = x+1 + \frac{4}{x-1},$$

the slant asymptote is y = x + 1. Thus there is no horizontal asymptote. Because the denominator is undefined at x = 1 and x - 1 is not a factor of the numerator, x = 1 is a vertical asymptote.

14.(6 pts.) Consider the function

$$f(x) = \frac{x^2 + 3}{x - 1}.$$

One of the following statements is true. Which one?

- (a) f is increasing on the interval (-1, 3).
- (b) f has a local minimum at x = -1.
- (c) f is decreasing on the intervals (-1, 1) and (1, 3).
- (d) f is increasing on the intervals $(-\infty, -1)$ and (1, 3).
- (e) f has a local minimum at x = 1.

Solution: From the previous problem, we know

$$f(x) = x + 1 + \frac{4}{x - 1},$$

Name: _____

Instructor:

so that

$$f'(x) = 1 - \frac{4}{(x-1)^2}.$$

Then for $x \neq 1$

$$f'(x) > 0 \Leftrightarrow 1 > \frac{4}{(x-1)^2}$$
$$\Leftrightarrow (x-1)^2 > 4$$
$$\Leftrightarrow (x-3)(x+1) > 0$$
$$\Leftrightarrow x < -1 \text{ or } x > 3.$$

Thus f is increasing on $(-\infty, -1)$ and $(3, \infty)$ and decreasing everywhere else (i.e. on (-1, 1) and (1, 3)).

Clearly x = 1 is not a local minimum since f has a vertical asymptote there. Although f'(-1) = 0, this is actually because of a local maximum. Indeed

$$f''(x) = \frac{8}{(x-1)^3},$$

so f''(-1) < 0.

15.(6 pts.) Consider the function

$$f(x) = \frac{\sqrt{9x^6 - x}}{x^3 + 1}.$$

One of the following statements is true. Which one?

- (a) y = 3 is a horizontal asymptote of f, and y = -3 is not a horizontal asymptote.
- (b) f has no horizontal asymptotes.
- (c) y = 0 and y = -3 are both horizontal asymptotes of f.
- (d) $y = \pm 3$ are both horizontal asymptotes of f.
- (e) y = 0 is a horizontal asymptote of f.

Solution: Since the problem only asks about horizontal asymptotes, we compute limits as $x \to \pm \infty$:

$$\lim_{x \to \infty} f(x) = \lim_{x \to \infty} \frac{\sqrt{9x^6 - x}}{x^3 + 1} \frac{\frac{1}{\sqrt{x^6}}}{\frac{1}{x^3}}$$
$$= \lim_{x \to \infty} \frac{\sqrt{9 - \frac{1}{x^5}}}{1 + \frac{1}{x^3}}$$
$$= \frac{\sqrt{9 - 0}}{1 + 0}$$
$$= 3,$$

and similarly (since $x^3 = -\sqrt{x^6}$ when x < 0)

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} \frac{\sqrt{9x^6 - x}}{x^3 + 1} \frac{-\frac{1}{\sqrt{x^6}}}{\frac{1}{x^3}}$$
$$= -\lim_{x \to -\infty} \frac{\sqrt{9 - \frac{1}{x^5}}}{1 + \frac{1}{x^3}}$$
$$= -\frac{\sqrt{9 - 0}}{1 + 0}$$
$$= -3,$$

so $y = \pm 3$ are both horizontal asymptotes of f.

16.(6 pts.) The function $f(x) = (2x + 1)^4 - 24x^2 + 5x$ is concave down on which of the following intervals?

- (a) (0,1) (b) $(-1,\infty)$
- (c) $(-\infty, -1)$ (d) (-1, 0)

(e) $(-\infty, 1)$

Solution: Since

$$f'(x) = 4(2x+1)^3 \cdot 2 - 48x + 5 = 8(2x+1)^3 - 48x + 5$$

and

$$f''(x) = 24(2x+1)^2 \cdot 2 - 48 = 48(\underbrace{(2x+1)^2 - 1}_{a^2 - b^2}) = 48(2x)(2x+2) = 192x(x+1),$$

finding where f''(x) < 0 amounts to solving x(x + 1) < 0. The curve x(x + 1) is an upward-opening parabola with roots at x = 0 and x = -1, and whence is negative when -1 < x < 0. Therefore f is concave down on (-1, 0).

Name: Instructor:

17.(6 pts.) An open box is to be made from a square of side one by cutting four identical squares near the vertices. The box with the largest **volume** has a **height** of

(a)
$$\frac{1}{6}$$
 (b) $\frac{3}{4}$ (c) $\frac{2}{17}$
(d) $\frac{1}{2}$ (e) $\frac{1}{4}$

Solution: If the height of the box is h (which is also the side length of the cutout square), then the volume is given by

$$V = h(1 - 2h)^2 = h - 4h^2 + 4h^3.$$

Thus

$$V' = 1 - 8h + 12h^{2} = (4h - 2)(3h - \frac{1}{2}),$$

so that V' = 0 when $h = \frac{1}{2}$ or $h = \frac{1}{6}$. In order to make a box, h must be in the interval (0, 1/2). Because V' is an upwardopening parabola, it must switch from positive to negative at $h = \frac{1}{6}$ and be negative until $h = \frac{1}{2}$, so $h = \frac{1}{6}$ is gives a maximum on (0, 1/2).

18.(6 pts.) When applying Newton's method to approximate a root of the equation $x^3 - x + 2 = 0$, with initial guess $x_1 = 1$, the value of x_2 is:

(a)1.5(b) 0.5(c) = 0

(d)
$$2$$
 (e) 3

Solution: With $f(x) = x^3 - x + 2$, we have

$$f'(x) = 3x^2 - 1.$$

Thus

$$x_{2} = x_{1} - \frac{f(x_{1})}{f'(x_{1})}$$
$$= 1 - \frac{f(1)}{f'(1)}$$
$$= 1 - \frac{2}{2}$$
$$= 0.$$

Name:	
Instructor:	

19.(6 pts.) Which of the following is a Riemann sum corresponding to the integral

(a)
$$\frac{2}{n} \sum_{i=1}^{n} (2 + \frac{i}{n})^4$$
 (b) $\frac{1}{n} \sum_{i=1}^{n} (2 + \frac{i}{n})^4$ (c) $\frac{1}{2n} \sum_{i=1}^{n} (\frac{i}{n})^4$
(d) $\frac{2}{n} \sum_{i=1}^{n} (2 + i)^4$ (e) $\frac{1}{n} \sum_{i=1}^{n} (\frac{i}{n})^4$

(d) $\frac{2}{n} \sum_{i=1}^{\infty} (\frac{2+i}{n})^4$ (e) $\frac{1}{n} \sum_{i=1}^{\infty} (\frac{i}{n})^4$

Solution: With $f(x) = x^4$ and $\Delta x = \frac{3-2}{n} = \frac{1}{n}$, the Riemann sum in this case is

$$\sum_{i=1}^{n} f(2+i\Delta x)\Delta x = \sum_{i=1}^{n} (2+\frac{i}{n})^4 \frac{1}{n} = \frac{1}{n} \sum_{i=1}^{n} (2+\frac{i}{n})^4$$

20.(6 pts.) A function f(x) defined on the interval [-1, 1] has an antiderivative F(x). Assume that F(-1) = 8 and F(1) = 7. Which one of the statements below is true?

(a)
$$\int_{-1}^{1} f(x) dx = 1.$$

- (b) F(x) is an increasing function.
- (c) f(x) can be an odd function.

(d)
$$\int_{-1}^{1} f(x) dx = 0.$$

(e)
$$\int_{-1}^{1} f(x) dx = -1.$$

Solution: If f is not assumed continuous, then f might not be integrable, so that none of the choices are correct. Thus we add the hypothesis that f is continuous.

By the fundamental theorem of calculus,

$$\int_{-1}^{1} f(x) \, dx = F(1) - F(-1) = 7 - 8 = -1.$$

Note that f(x) cannot be an odd function since if it were, then

$$\int_{-1}^{1} f(x) \, dx = 0,$$

contrary to the calculation above.

21.(6 pts.) Calculate the integral

(a)
$$\pi$$
 (b) 1 (c) $\frac{\pi}{2}$
(d) 2π (e) 2

Solution: Since $\sin x < 0$ only on $(\pi, 3\pi/2)$,

$$\int_{\pi/2}^{3\pi/2} |\sin x| \, dx = \int_{\pi/2}^{\pi} \sin x \, dx + \int_{\pi}^{3\pi/2} -\sin x \, dx$$
$$= -\cos x \big|_{\pi/2}^{\pi} + \cos x \big|_{\pi}^{3\pi/2}$$
$$= 2.$$

22.(6 pts.) The volume of the solid obtained by rotating the region given by $x^2 + y^2 = 1$, $x \ge 0$ and $y \ge 0$, about the line y = -1 is

(a)
$$\pi \int_0^1 (1-x^2) dx$$

(b) $\pi \int_0^1 [1-x^2+2\sqrt{1-x^2}] dx$
(c) $2\pi \int_0^1 x [1-x^2+2\sqrt{1-x^2}] dx$
(d) $2\pi \int_0^1 x \sqrt{1-x^2} dx$

(e)
$$\pi \int_0^1 (1 + \sqrt{1 - x^2})^2 dx$$

Solution: The outer radius is $\sqrt{1-x^2} + 1$ and the inner is -1, so r^1

$$V = \int_0^1 \pi((\text{outer radius})^2 - (\text{inner radius})^2) \, dx$$
$$= \int_0^1 \pi((\sqrt{1-x^2}+1)^2 - 1^2) \, dx$$
$$= \pi \int_0^1 [1-x^2 - 2\sqrt{1-x^2}] \, dx.$$

23.(6 pts.) Find the volume of the solid obtained by rotating about the *y*-axis the region between $y = x^2$ and $y = x^4$.

(a)
$$\frac{\pi}{6}$$
 (b) π (c) $\frac{\pi}{10}$ (d) 2π (e) $\frac{\pi}{5}$

Solution: The curves intersect when x = 0 and x = 1 (and x = -1, but since the solid is obtained by rotating around the y-axis, this intersection point is irrelevant). Thus

$$V = \int_0^1 2\pi x [x^2 - x^4] dx$$

= $2\pi \left[\frac{x^4}{4} - \frac{x^6}{6} \right]_0^1$
= $2\pi \left[\frac{1}{4} - \frac{1}{6} \right]$
= $\frac{\pi}{6}$.

24.(6 pts.) Find the average of $f(x) = \sin^2(x) \cdot \cos(x)$ over $[0, \frac{\pi}{2}]$.

(a)
$$\frac{2}{\pi}$$
 (b) $\frac{1}{3\pi}$ (c) $\frac{2}{3\pi}$

(d)
$$\frac{1}{3}$$
 (e) $\frac{1}{\pi}$

Solution: The average is given by

$$\frac{1}{\pi/2} \int_0^{\pi/2} \underbrace{\sin^2(x)}_{u^2} \underbrace{\cos(x) \, dx}_{du} = \frac{2}{\pi} \int_0^1 u^2 \, du$$
$$= \frac{2}{3\pi}.$$

25.(6 pts.) A (vertical) cylindrical tank has a height 1 meter and base radius 1 meter. It is filled full with a liquid with a density 100 kg/m^3 . Find the work required to empty the tank by pumping all of the liquid to the top of the tank.

- (a) 500π kg-m (b) 100π kg-m
- (c) 200π kg-m (d) 0 kg-m
- (e) 50π kg-m

Solution: None of the given solutions are correct.

We consider the cylinder sliced into n slabs of equal height Δx so that the work done on the i^{th} slice is

$$W_i = F_i x_i$$

= $(100 \times V_i \times 9.8) x_i$
= $(100 \times \pi (1)^2 \Delta x \times 0.8) x_i$
= $(980\pi\Delta x) x_i$,

where x_i is a point in the *i*th slab. Then the total work is

$$W = \lim_{n \to \infty} \sum_{i=1}^{n} W_i$$

= 980\pi \lim_{n \to \infty} \sum_{i=1}^{n} x_i \Delta x
= 980\pi \int_0^1 x dx
= 980\pi / 2
= 490\pi.

Name: _____

Math 10550, Final Exam: December 15, 2007

Instructor: <u>ANSWERS</u>

- Be sure that you have all 20 pages of the test.
- No calculators are to be used.
- The exam lasts for two hours.
- When told to begin, remove this answer sheet and keep it under the rest of your test. When told to stop, hand in just this one page.
- The Honor Code is in effect for this examination, including keeping your answer sheet under cover.

PLEASE MARK YOUR ANSWERS WITH AN X, not a circle!											
1. 2.	(a) (a)	(b) (b)	(c) (c)	(d) (d)		15. 16.	(a) (a)	(b) (b)	(c) (c)	(ullet) (ullet)	(e) (e)
 3. 4.	(a) (●)	(●) (b)	(c) (c)	(d) (d)	(e) (e)	17. 18.	(●) (a)	(b) (b)	(c) (•)	(d) (d)	(e) (e)
 5. 6.	(a) (●)	(b) (b)	(●) (c)	(d) (d)	(e) (e)	19. 20.	(a) (a)	(●) (b)	(c) (c)	(d) (d)	(e) (●)
 7. 8.	(a) (a)	(•) (b)	(c) (●)	(d) (d)	(e) (e)	21. 22.	(a) (a)	(b) (●)	(c) (c)	(d) (d)	(●) (e)
9. 10.	(a) (a)	(b) (b)	(c) (c)	(●) (●)	(e) (e)	23. 24.	(●) (a)	(b) (b)	(c) (●)	(d) (d)	(e) (e)
 11. 12.	(•) (a)	(b) (b)	(c) (•)	(d) (d)	(e) (e)	25.	(a)	(b)	(c)	(d)	(•)
 13. 14	(•) (•)	(b)	(c)	(d)	(e) (e)						
17.	(a)	(0)	(•)	(u)	(0)						